Blogia
wrangler

Investigacion # 2

REGULACIÓN DE VOLTAJE  (RV)

La carga de los transformadores de potencia varián constantemente, ocurriendo la mayor variación en los periodos de mayor actividad industrial y comercial, esto provoca que el voltaje en los secundarios de los transformadores varien de acuerdo con la carga y el  factor de potencia, dependiendo si esta  en atraso, en adelanto o si es la unidad. Ya que todos los equipos eléctricos, electrónicos, motores, lámparas son muy sensibles a los cambios de tensión que pudiesen causarles daños es muy importante tener una buena regulación de voltaje, por lo que es muy importante conocer las características de los elementos constructivos de transformadores y líneas de transmisión, además de su comportamiento ante carga capacitiva, inductivas o resistiva.

El Coeficiente de Regulación de Voltaje o la Regulación de Voltaje (RV) es una cantidad que compara el voltaje de salida sin carga (en Vacío) con el voltaje de salida a plena carga y se define por la ecuación.

 

VS:    Voltaje de Salida de una línea de transmisión o

Voltaje Secundario de un transformador

A nivel de suministro de tensión se desea tener una regulación de voltaje tan pequeña como sea posible.

Para un transformador ideal, RV = 0%, lo cual nos indica que sus devanados no presentan una resistencia y no requiere de potencia reactiva para su funcionamiento. Sin embargo, los transformadores reales tienen cierta resistencia en los devanados y requieren de una potencia reactiva para producir su campo magnéticos, es decir, posee dentro de el impedancias en serie, tal y como se observa en la figura 1, entonces su voltaje de salida varia de acuerdo con la carga aun cuando el voltaje de entrada y la frecuencia permanezcan constante.

La variación de la tensión en el secundario depende esencialmente de dos variables, de la corriente absorbida por la carga y de su factor de potencia.

Para determinar la regulación es necesario conocer las caídas de voltaje que ocurren en el interior de un transformador. En la figura 1, se observa el circuito equivalente del transformador simplificado donde se ignoran los efectos de la rama de excitación y se considera solo las impedancias en serie.

Rectificador de media onda. Fuente no regulada

// ]]>


La corriente y voltaje que las compañías distribuyen a nuestras casas, comercios u otros es corriente alterna. Para que los artefactos electrónicos que allí tenemos puedan funcionar adecuadamente, la corriente alterna debe de convertirse en corriente continua.

Para realizar esta operación se utilizan diodos semiconductores que conforman circuitos rectificadores. Inicialmente se reduce el voltaje de la red (110 / 220 voltios AC u otro) a uno más bajo como 12 o 15 Voltios AC con ayuda de un transformador. A la salida del transformador se pone el circuito rectificador.

La tensión en el secundario del transformador es alterna, y tendrá un semiciclo positivo y uno negativo

Polarización del diodo en sentido directo

Durante el semiciclo positivo el diodo queda polarizado en directo, permitiendo el paso de la corriente a través de él. Ver gráfico.

Rectificador de 1/2 onda en polarización directa del diodo - Electrónica UnicromCircuito equivalente a polarización directa en rectificación de 1/2 onda - Electrónica Unicrom

Si el diodo es considerado como ideal, este se comporta como un cortocircuito, (ver gráfico), entonces toda la tensión del secundario aparecerá en la resistencia de carga.

Polarización del diodo en sentido inverso

Durante el semiciclo negativo, la corriente entregada por el transformador querrá circular en sentido opuesto a la flecha del diodo. Si el diodo es considerado ideal entonces este actúa como un circuito abierto y no habrá flujo de corriente, 

La forma de onda de salida de un rectificador de 1/2 onda será como se muestra en la siguiente figura.

Rectificador de 1/2 onda, diodo polarizado en inversa - Electrónica Unicrom  Rectificador de 1/2 onda, circuito equivalente al diodo en inversa - Electrónica Unicrom

 

Fuente de alimentación

 
Fuente de alimentación para PC (sin cubierta superior, para mostrar su interior).
 
Fuentes de alimentación externas.

En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).

 

Clasificación

Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, pero sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de las misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.

Fuentes de alimentación lineales

Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.

En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador.

 Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (Inductores y capacitores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctr125ico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.

Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.

La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales

Hay 2 tipos de fuentes utilizados en las computadoras, la primer liga es la mas antigua y la segunda la mas reciente:
  1. Fuente de poder AT.
  2. 
  3. Fuente de poder ATX.

DIFERENTES TIPOS DE CABLES Y CONECTORES QUE SUELE UTILIZAR UN PC.

La costumbre hace que cuando contestamos alguna pregunta relacionada con un PC digamos que compruebe tal o cual cable o que mire este o aquel conector, pero pocas veces nos paramos a pensar si la persona a la que estamos respondiendo conoce esos cables, cuales son, como son físicamente y para qué sirven.


Vamos a intentar en este tutorial darles un repaso a los principales, ordenándolos en lo posible por su uso.

Cables de datos:

Los principales cables (también llamados a veces fajas) utilizados para la transmisión de datos son:

Faja FDD o de disquetera:


Imágenes de dos tipos diferentes de cables FDD, uno plano y otro redondo.

Es el cable o faja que conecta la disquetera con la placa base.

Se trata de un cable de 34 hilos con dos o tres terminales de 34 pines. Uno de estos terminales se encuentra en un extremo, próximo a un cruce en los hilos. Este es el conector que va a la disquetera asignada como unidad A.
En el caso de tener tres conectores, el del centro sería para conectar una segunda disquetera asignada como unidad B.

El hilo 1 de suele marcar de un color diferente, debiendo este coincidir con el pin 1 del conector.

Faja IDE de 40 hilos:

 
Imagen de una faja IDE de 40 hilos.

Las fajas de 40 hilos son también llamadas Faja ATA 33/66, en referencia a la velocidad de transferencia que pueden soportar.

La longitud máxima no debe exceder los 46cm.

Al igual que en las fajas FDD, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.

Este tipo de faja no sirve para los discos IDE modernos, de 100Mbps o de 133Mbps, pero si se pueden utilizar tanto el lectoras como en regrabadoras de CD / DVD.

Faja IDE de 80 hilos:


Imágenes de dos tipos diferentes de cables IDE 80, uno plano y otro redondo.

Los cables IDE80, también llamados Faja ATA 100/133, son los utilizados para conectar dispositivos ATA - PATA a los puertos IDE de la placa base.

Son fajas de 80 hilos, pero con terminales de 40 contactos.

Esto se debe a que llevan 40 hilos de datos o tensión y 40 hilos de masa. Estos últimos tienen la finalidad de evitar interferencias entre los hilos de datos, por lo que permiten una mayor velocidad de transmisión.

A diferencia de las fajas de 40 hilos, en las que es indiferente el orden de conexión maestro / esclavo, en las fajas de 80 hilos estas deben estar en un orden establecido, estando este orden determinado por el color de los conectores, que suele ser:

Azul.- En un extremo, al IDE de la placa base.
Gris.- En el centro, al dispositivo esclavo.
Negro.- En el otro extremo, al dispositivo Master.

Estas fajas se pueden utilizar también sin problemas para conectar lectoras y regrabadoras de CD / DVD o en discos duros ATA 33 o ATA 66.

Al igual que en las fajas IDE 40, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.

Cable SATA:


En estas imágenes podemos ver un cable SATA y, en la de la derecha, los conectores en detalle.

Las unidades SATA (discos duros, regrabadoras de DVD...) utilizan un tipo específico de cable de datos.

Estos cables de datos están más protegidos que las fajas IDE y tienen bastantes menos contactos.

En concreto, se trata de conectores de 7 contactos, formados por dos pares apantallados y con una impedancia de 100 Ohmios y tres cables de masa (GND).

Los cables de masa corresponden a los contactos 1, 4 y 7, el par 2 y 3 corresponde a transmisión + y transmisión - y el par 5 y 6 a recepción - y recepción +.

Este tipo de cables soporta unas velocidades muchísimo más altas que los IDE (actualmente hasta 3Gbps en los SATA2), así como unas longitudes bastante mayores (de hasta 2 metros). Las conexiones SATA son conexiones punto a punto, por lo que necesitamos un cable por cada dispositivo.

Faja SCSI:

 
Cable o Faja SCSI III.

Este tipo de cable conecta varios dispositivos y los hay de diferentes tipos, dependiendo del tipo de SCSI que vayan a conectar.

SCSI-1.- Conector de 50 pines, 8 dispositivos max. y 6 metros max.
SCSI-2.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra Wide.- Conector de 68 pines, 15 dispositivos max. y 1.5 metros max.
SCSI-3 Ultra 2.- Conector de 68 pines, 15 dispositivos max. y 12 metros max.

Cables USB:


Las conexiones USB soportan una distancia máxima de 5 metros, aunque con dispositivos amplificadores se puede Izquierda, cable USB. A la derecha, conectores tipo A y B.

Los cables USB son cada vez más utilizados en conexiones exteriores.
Se trata de cables de 4 contactos, distribuidos de la siguiente forma:

Contacto 1.- Tensión 5 voltios.
Contacto 2.- Datos -.
Contacto 3.- Datos +.
Contacto 4.- Masa (GND).

Dado que también transmiten tensión a los periféricos, es muy importante, sobre todo en las conexiones internas (a placa base mediante pines) seguir fielmente las indicaciones de conexión suministradas por el fabricante de la placa base, ya que un USB mal conectado puede causar graves averías, tanto en el periférico conectado como en la propia placa base.


superar esta distancia.

Los conectores estandarizados son el tipo A, utilizado sobre todo en las placas base y en los dispositivos tipo Hub, y el tipo B, utilizado en periféricos (impresoras, escáneres, discos externos...).

 

Existe otro conector estandarizado (hasta cierto punto), denominado Mini USB, que podemos ver en la imagen superior, utilizado por dispositivos USB de pequeño tamaño a multimedia (MP3, cámaras fotográficas y de vídeo, etc.).

Los conectores USB admiten hasta un máximo de 127 dispositivos.

Además de estos (que son los más habituales), no existe una reglamentación en cuanto a la estandarización de la forma y tamaño de este tipo de conectores, por lo que hay en el mercado cientos de tipos diferentes de conectores (sobre todo del tipo Mini), que en ocasiones solo sirven para una marca y modelo determinado.

Cables IEEE1394 (Firewire):

 

 

 


 

0 comentarios